Groups having a faithful irreducible representation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Faithful Permutation Degrees for Irreducible Coxeter Groups

The minimal faithful degree of a finite group G, denoted by μ(G), is the least non-negative integer n such that G embeds inside Sym(n). In this article we calculate the minimal faithful permutation degree for all of the irreducible Coxeter groups.

متن کامل

A representation for some groups, a geometric approach

‎In the present paper‎, ‎we are going to use geometric and topological concepts‎, ‎entities and properties of the‎ ‎integral curves of linear vector fields‎, ‎and the theory of differential equations‎, ‎to establish a representation for some groups on $R^{n} (ngeq 1)$‎. ‎Among other things‎, ‎we investigate the surjectivity and faithfulness of the representation‎. At the end‎, ‎we give some app...

متن کامل

Surface Groups are Frequently Faithful

We show the set of faithful representations of a closed orientable hyperbolic surface group is dense in both irreducible components of the PSL2(K) representation variety, where K = C or R, answering a question of W. Goldman. We also prove the existence of faithful representations into PU(2, 1) with certain nonintegral Toledo invariants.

متن کامل

Irreducible Numerical Semigroups Having Toms Decomposition

In this paper we prove that if S is an irreducible numerical semigroup and S is generated by an interval or S has multiplicity 3 or 4, then it enjoys Toms decomposition. We also prove that if a numerical semigroup can be expressed as an expansion of a numerical semigroup generated by an interval, then it is irreducible and has Toms decomposition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2016

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2015.12.030